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Géométrie élémentaire du plan

Prérequis :
– le plan, en tant qu’ensemble de points, et la façon dont, à partir de deux points

A et B, on construit
#    »
AB.

– le calcul vectoriel.

– la notion de distance euclidienne.

– l’orthogonalité.

– la notion d’angle.

Notations :
– P désigne le plan (affine euclidien).

–
#»P le plan vectoriel (c’est-à-dire l’ensemble des vecteurs du plan P).
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1 Deux modes de repérage dans le plan

1.1 Orientation, bases et repères

Remarques 1.1.1

(i) Il y a deux façons d’orienter le plan, c’est-à-dire deux façons d’attribuer le signe positif à un sens
de rotation. Traditionnellement, on attribue le signe positif au sens trigonométrique (sens inverse des
aiguilles d’une montre). Dorénavant P est orienté.

(ii) Rappelons que toute mesure d’angle n’est définie que modulo 2π et que tout angle admet une unique
mesure dans l’intervalle ]− π, π]. Cette mesure est appelée mesure principale.

Définition 1.1.2 Soit ( #»u , #»v ) ∈ #»P 2.
#»u et #»v sont colinéaires si et seulement s’il existe deux réels α et β non tous les deux nuls tels que :

α #»u + β #»v = #»0

Remarques 1.1.3

(i) En pratique, lorsqu’on détermine l’éventuelle colinéarité de deux vecteurs, ils sont souvent non nuls. Si par
exemple #»u 6= #»0 , alors #»u et #»v sont colinéaires si et seulement s’il existe λ ∈ R tel que #»v = λ #»u .

(ii) La colinéarité permet de définir la notion de droite : un point A ∈ P et un vecteur #»u non nul étant donnés,

l’ensemble des points M tels que
#     »

AM et #»u sont colinéaires est appelé la droite passant par A et de vecteur
directeur #»u .

(iii) On peut également proposer la définition suivante : un point A ∈ P et un vecteur #»n non nul étant donné,

l’ensemble des points M tels que
#     »

AM et #»n sont orthogonaux est une droite. #»n est appelé un vecteur
normal de cette droite.

Définitions 1.1.4

(i) On appelle base du plan tout couple B = ( #»ı , #» ) où #»ı et #» sont deux vecteurs non colinéaires.

(ii) On appelle base orthogonale du plan toute base B = ( #»ı , #» ) telle que ( #»ı , #» ) admette pour mesure
principale ±π2 .

(iii) On appelle base orthonormale du plan toute base orthogonale B = ( #»ı , #» ) telle que ‖ #»ı ‖ = ‖ #» ‖ = 1.

(iv) On appelle base directe (respectivement indirecte) du plan toute base B = ( #»ı , #» ) telle que ( #»ı , #» ) ait
sa mesure principale dans l’intervalle ]0, π[ (respectivement ]− π, 0[).

Définitions 1.1.5

(i) On appelle repère cartésien du plan (ou plus simplement repère) tout triplet R = (O; #»ı , #» ) où O ∈ P,
et ( #»ı , #» ) est une base.

Le point O est appelé origine du repère, les droites passant par O de vecteurs directeurs respectifs #»ı et
#» sont appelées axes du repère : l’axe des abscisses d’une part et l’axe des ordonnées d’autre part.

(ii) On appelle repère orthogonal du plan tout repèreR = (O; #»ı , #» ) tel que ( #»ı , #» ) est une base orthogonale.

(iii) On appelle repère orthonormal du plan tout repère R = (O; #»ı , #» ) tel que ( #»ı , #» ) est une base ortho-
normale.

(iv) On appelle repère direct (respectivement indirect) du plan tout repère R = (O; #»ı , #» ) tel que ( #»ı , #» )
est une base directe (respectivement indirecte).

1.2 Coordonnées cartésiennes

Propriété et définition 1.2.1 Un repère R = (O; #»ı , #» ) étant donné, pour tout point M ∈ P il existe un
unique couple (x, y) ∈ R2 tel que :

#      »

OM = x #»ı + y #»

Cet unique couple est appelé coordonnées cartésiennes de M dans le repère R.
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Exercice 1.2.2

1. Démontrer l’unicité dans la démonstration précédente.

2. Démontrer que, pour tout n ∈ N, les points M(
√
n+ 1−

√
n, 1) et N(1,

√
n+ 1 +

√
n) sont tels que

#      »

OM

et
#     »

ON sont colinéaires.

Remarques 1.2.3

(i) De la propriété précédente, on déduit qu’il existe une bijection
entre le plan P et R2. On dit que l’on peut identifier le plan
P et l’ensemble R2. Si de plus le repère choisi est orthonormal
direct, on peut également identifier le plan à C.

(ii) L’ensemble
#»P des vecteurs du plan est muni d’une structure

d’espace vectoriel réel (cf. annexe) et tout #»u ∈ #»P s’écrit de
façon unique x #»ı +y #» où ( #»ı , #» ) est une base de P et le couple
(x, y) est appelé coordonnées de #»u .

b

b M(x, y)

x#»ı

y

#»

O

1

Propriété 1.2.4 – Formules de changement de repère orthonormaux directs
Soient R = (O; #»ı , #» ) et R′ = (O′; #»ı ′, #» ′) deux repères orthonormaux directs. Pour tout M ∈ P, on note

(x, y) ses coordonnées dans R et (x′, y′) ses coordonnées dans R′. On note (a, b) les coordonnées de O′ dans R.

(i) Il existe θ ∈ R tel que les coordonnées de #»ı ′ et #» ′ dans le repère R sont :

#»ı

Å
cos θ
sin θ

ã
#» ′
Å
− sin θ
cos θ

ã
(ii) x et y vérifient : ß

x = a+ x′ cos θ − y′ sin θ
y = b+ x′ sin θ + y′ cos θ

O #»ı

#»

b

b

O′

M

#»

i′
#»

j′ θ

x

y

y′

x′

a

b

1

Démonstration : Commençons par démontrer l’existence de θ : P est muni du repère orthonormal
direct R et ce repère permet d’identifier P à C. Soit z ∈ C l’affixe de #»ı ′, puisque ‖ #»ı ′‖ = 1 on en déduit
que z ∈ U donc il existe θ ∈ R tel que z = eiθ par conséquent #»ı ′ a pour coordonnées (cos θ, sin θ) dans
R.

De plus, puisque ( #»ı ′, #» ′) = π
2 (2π) on en déduit que l’affixe de #» ′ est ei(θ+ π

2 ) donc #» ′ a pour
coordonnées

(
cos
(
θ + π

2
)
, sin

(
θ + π

2
))

soit (− sin θ, cos θ).
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Concernant le point (ii) on a :

#      »

OM =
#      »

OO′ +
#       »

O′M

x #»ı + y #» = a #»ı + b #» + x′ #»ı ′ + y′ #» ′

x #»ı + y #» = a #»ı + b #» + x′ (cos θ #»ı + sin θ #» ) + y′ (− sin θ #»ı + cos θ #» )
x #»ı + y #» = (a+ x′ cos θ − y′ sin θ) #»ı + (b+ x′ sin θ + y′ cos θ) #»

D’où le résultat par unicité des coordonnées dans un repère.
C.Q.F.D.

Exercice 1.2.5 On considère le plan P muni d’un repère orthonormal (O; #»ı , #» ) et du repère orthonormal
(O, #»ı ′, #» ′), image de (O; #»ı , #» ) par rotation de centre O et d’angle π

4 .

1. Donner les coordonnées de #»ı ′ et #» ′ dans (O; #»ı , #» ).
2. (a) Soit A le point de coordonnées (1, 2) dans (O; #»ı , #» ). Quelles sont ses coordonnées dans (O, #»ı ′, #» ′) ?

(b) Soit B de coordonnées (−2, 3) dans (O, #»ı ′, #» ′). Quelles sont ses coordonnées dans (O; #»ı , #» ) ?

3. Soit la courbe d’équation x2 − y2 = 1 dans (O; #»ı , #» ). Quelle est son équation dans (O, #»ı ′, #» ′) ? Que
peut-on en déduire ?

1.3 Coordonnées polaires

Propriété et définition 1.3.1 Soit R = (O; #»e1,
#»e2) un re-

père orthonormal. Pour tout point M ∈ P distinct de O, l’angle
( #»e1,

#      »

OM) existe, on note θ une mesure de cet angle et on note
ρ = OM . Réciproquement, pour tout (ρ, θ) ∈ R∗+ × R, il existe un

unique point M tel que ( #»e1,
#      »

OM) = θ et OM = ρ.

Le couple (ρ, θ) est alors appelé coordonnées polaires du
point M . ρ est appelé le rayon polaire de M et θ l’angle po-
laire de M .

O #»e1

#»e2

M(ρ, θ)

θ

b

ρ

1

Par convention, on attribue à O les coordonnées polaires (0, θ) (bien que l’angle entre les vecteurs #»e1 et
#    »

OO)
ne soit pas défini) où θ est un nombre réel quelconque. Dorénavant ρ désigne donc un réel supérieur ou égal à 0.

Remarque 1.3.2 Il est clair que pour tout M ∈ P, ρ = OM est unique. Par contre, pour M 6= O, θ
n’est unique qu’à 2kπ près (avec k ∈ Z). Autrement dit si M et M ′ sont deux points distincts de O dont les
coordonnées polaires respectives sont (ρ, θ) et (ρ′, θ′) alors :

M = M ′ ⇔
ß
ρ = ρ′

Il existe k ∈ Z tel que θ = θ′ + 2kπ

Définition 1.3.3 Le plan étant muni d’un repère orthonormal
R = (O; #»e1,

#»e2), on appelle, pour tout θ ∈ R, repère polaire, le
repère (O; #»u (θ), #»v (θ) où #»u (θ) et #»v (θ) sont définis par :ß

#»u (θ) = cos θ #»e1 + sin θ #»e2
#»v (θ) = − sin θ #»e1 + cos θ #»e2

Autrement dit #»u (θ) et #»v (θ) sont les vecteurs d’affixes respec-

tives eiθ et ei(θ+ π
2 ) = ieiθ.

Pour tout point M ∈ P,
#      »

OM = ρ #»u (θ) où (ρ, θ) ∈ R+ × R sont
les coordonnées polaires de M .

O #»e1

#»e2

M(ρ, θ)

θ

b

ρ

#»u (θ)#»v (θ)

1

1.4 Lien entre les deux modes de repérage

La propriété suivante est triviale :
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Propriété 1.4.1 Le plan étant muni d’un repère orthonormal R et soit M ∈ P un point distinct de O dont
on note (x, y) ∈ R2 et (ρ, θ) ∈ R∗+ × R les coordonnées cartésiennes et polaires dans R. On a alors :ß

x = ρ cos θ
y = ρ sin θ ⇐⇒


ρ =

√
x2 + y2

cos θ = x√
x2+y2

sin θ = y√
x2+y2

On prendra garde au fait que θ n’est pas nécessairement égal à arccos x√
x2+y2

ou arcsin y√
x2+y2

; cela dépend

du quart de plan dans lequel se trouve M .

Exercice 1.4.2 On munit le plan d’un repère orthonormal.

1. On considère les points A, B, C et D dont on donne les coordonnées cartésiennes : (2, 2), (−
√

3, 1),
(−8,−8

√
3) et D(−6,−1). Déterminer les polaires de ces points.

2. Déterminer les coordonnées cartésiennes des points E et F dont on donne les coordonnées polaires
(√

2, 3π
4
)

et
(
16,− 5π

6
)
.

2 Produit scalaire

2.1 Définitions, propriétés

Définition 2.1.1 Soit ( #»u , #»v ) ∈ #»P 2. On appelle produit scalaire de #»u et #»v le réel défini par :

(i) #»u · #»v = 0 si #»u = #»0 ou #»v = #»0 .

(ii) #»u · #»v = ‖ #»u‖ ‖ #»v ‖ cos( #»u , #»v ) si #»u 6= #»0 et #»v 6= #»0 .

Définition 2.1.2 Soit d une droite sur laquelle on a choisi arbitrairement une orientation et soient A et B

deux points sur cette droite. On appelle mesure algébrique de AB le réel noté AB défini par AB = AB si le
sens de A vers B est positif et AB = −AB si ce sens est négatif.

Remarques 2.1.3

(i) Les mesures algébriques vérifient la relation de Chasles : si A, B et C sont trois points alignés et quelle
que soit l’orientation choisie sur (AB) on a : AC = AB +BC.

(ii) La notion de mesure algébrique est utilisée dans la propriété suivante (admise).

Propriété 2.1.4 – Interprétation en terme de projection
Soient A, B, C et D quatre points du plan tels que A 6= B. On note C ′ et D′les projetés orthogonaux de C

et D sur (AB).
Le produit AB C ′D′ ne dépend pas de l’orientation choisie sur (AC) et :

#    »

AB · #    »

AC = AB C ′D′

Cette relation est encore vrai si A = B, C ′ et D′ désignant alors des points quelconques du plan.

Propriété 2.1.5 Soient ( #»u , #»v , #»w) ∈ #»P ,3 et λ ∈ R.

(i) #»u · #»v = #»v · #»u (symétrie)

(ii) #»u · ( #»v + #»w) = #»u · #»v + #»u · #»w et #»u · (λ #»v ) = λ( #»u · #»v ) (linéarité à droite)
´

(bilinéarité)(iii) ( #»u + #»v ) · #»w = #»u · #»w + #»v · #»w et (λ #»u ) · #»v = λ( #»u · #»v ) (linéarité à gauche)

Démonstration :

Le point (i) découle de la parité de la fonction cos.
Si #»u = #»0 alors #»u · ( #»v + #»w) et #»u · #»v + #»u · #»w valent 0.

Si #»u 6= #»0 alors on considère des points tels que #»u = #    »

AB,
#»v = #    »

AC et #»w = #    »

CD et on projette C et D orthogonalement
sur (AB) pour obtenir C ′ et D′. On a alors :

#»u · ( #»v + #»w) = #    »

AB ·
Ä

#    »

AC + #    »

CD
ä

= #    »

AB · #    »

AD = AB AD′
b

b

b

bbb

A B

C

D

C′D′

1
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Par ailleurs :

#»u · #»v + #»u · #»w = #    »

AB · #    »

AC + #    »

AB · #    »

CD = AB AC ′ +AB C ′D′ = AB
(
AC ′ + C ′D′

)
= AB AD′

Ceci démontre la première partie du point (ii).
Soit λ ∈ R. Si λ = 0 ou #»u = #»0 ou #»v = #»0 alors il est clair que #»u · (λ #»v ) = 0 = λ( #»u · #»v ).
On suppose que #»u , #»v et λ sont non nuls. Si λ > 0 alors :

#»u · (λ #»v ) = ‖ #»u‖ ‖λ #»v ‖ cos( #»u , λ #»v ) = ‖ #»u‖ |λ| ‖ #»v ‖ cos( #»u , #»v )
= λ ‖ #»u‖ ‖ #»v ‖ cos( #»u , #»v ) = λ ( #»u · #»v )

Si λ < 0 alors :

#»u · (λ #»v ) = ‖ #»u‖ ‖λ #»v ‖ cos( #»u , λ #»v ) = ‖ #»u‖ |λ| ‖ #»v ‖ cos (( #»u , #»v ) + π)
= −λ ‖ #»u‖ ‖ #»v ‖ (− cos( #»u , #»v )) = λ ‖ #»u‖ ‖ #»v ‖ cos( #»u , #»v ) = λ ( #»u · #»v ) d’où le point (ii).

Le point (iii) découle aisément de (i) et (ii) :

( #»u + #»v ) · #»w = #»w · ( #»u + #»v ) = #»w · #»u + #»w · #»v = #»u · #»w + #»v · #»w

Et (λ #»u ) · #»v = #»v · (λ #»u ) = λ( #»v · #»u ) = λ( #»u · #»v ).
C.Q.F.D.

Exercice 2.1.6 Simplifier autant que possible l’expression #»u · ( #»u + 2 #»v )− 2 #»v · #»u .

Propriété 2.1.7 – Expression en base orthonormale

Soient ( #»u , #»v ) ∈ #»P 2 deux vecteurs de coordonnées cartésiennes (x, y) et (x′, y′) dans une base orthonormale
( #»ı , #» ). Alors :

#»u · #»v = xx′ + yy′

Exercice 2.1.8

1. Démontrer la propriété précédente.

2. Soient #»u et #»v d’affixes z et z′. Démontrer que #»u · #»v = Re(zz′).
3. À l’aide d’un produit scalaire, démontrer les deux formules suivantes :

∀(a, b) ∈ R2, cos(a− b) = cos a cos b+ sin a sin b cos(a+ b) = cos a cos b− sin a sin b

2.2 Applications

Les deux propriétés suivantes sont très faciles à démontrer :

Propriété 2.2.1 – Application à la perpendicularité
Soient deux droites d et d′ de vecteurs directeurs #»u et #»v . d et d′ sont perpendiculaires si et seulement si :

#»u · #»v = 0

Propriété 2.2.2 – Application au calcul d’angle

Soient #»u et #»v deux vecteurs non nuls : ( #»u , #»v ) = ± arccos
#»u · #»v

‖ #»u‖ ‖ #»v ‖
(2π). En pratique, une figure peut

permettre de déterminer le signe de la mesure principale de ( #»u , #»v ).

Exercice 2.2.3 Déterminer une valeur approchée de l’angle ( #»u , #»v ), les vecteurs #»u et #»v ayant pour coor-
données (1, 4) et (5,−3) dans un repère orthonormal direct.
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3 Déterminant géométrique

3.1 Définition, propriétés

Définition 3.1.1 Soit ( #»u , #»v ) ∈ #»P 2. On appelle déterminant géométrique de #»u et #»v le réel défini par :

(i) Det( #»u , #»v ) = 0 si #»u = #»0 ou #»v = #»0 .

(ii) Det( #»u , #»v ) = ‖ #»u‖ ‖ #»v ‖ sin( #»u , #»v ) si #»u 6= #»0 et #»v 6= #»0 .

Propriété 3.1.2 – Interprétation comme aire de parallélogramme

Soit ( #»u , #»v ) ∈ #»P 2, |Det( #»u , #»v )| est l’aire du parallélogramme construit sur #»u et #»v .

Démonstration : Si #»u = #»0 ou #»v = #»0 alors l’aire du parallélogramme est nulle. Si les deux vecteurs
#»u et #»v sont non nuls alors l’aire du parallélogramme construit sur #»u et #»v vaut A = ‖ #»u‖ h.

Or |Det( #»u , #»v )| = ‖ #»u‖ ‖ #»v ‖ | sin( #»u , #»v )| et la tri-
gonométrie élémentaire dans le triangle rectangle ABC
donne | sin( #»u , #»v )| = h

‖ #»v ‖ soit h = ‖ #»v ‖ | sin( #»u , #»v )| donc

A = ‖ #»u‖ | sin( #»u , #»v )| ‖ #»v ‖ soit finalement :

A = |Det( #»u , #»v )|

#»
u

#»
v

h

b

b

b

A

B

C

1

C.Q.F.D.

La propriété ci-dessous se démontre par les mêmes méthodes que ce qui a été vu en 2.1.5 :

Propriété 3.1.3 Soit ( #»u , #»v , #»w) ∈ #»P 3 et λ ∈ R.

(i) Det( #»u , #»v ) = −Det( #»v , #»u ) (antisymétrie)

(ii) Det( #»u , #»v + #»w) = Det( #»u , #»v ) + Det( #»u , #»w) et

Det( #»u , λ #»v ) = λDet( #»u , #»v ) (linéarité à droite)

(iii) Det( #»u + #»v , #»w) = Det( #»u , #»w) + Det( #»v , #»w) et

Det(λ #»u , #»v ) = λDet( #»u , #»v ) (linéarité à gauche)

 (bilinéarité)

Propriété 3.1.4 – Expression en base orthonormale directe

Soit ( #»u , #»v ) ∈ #»P 2 deux vecteurs de coordonnées (x, y) et (x′, y′) dans une base orthonormale directe ( #»ı , #» ).
Alors :

Det( #»u , #»v ) = xy′ − yx′

Exercice 3.1.5

1. Démontrer la propriété précédente.

2. Soient #»u et #»v d’affixes z et z′. Démontrer que #»u · #»v = Im(zz′).
3. À l’aide d’un produit scalaire, démontrer les deux formules suivantes :

∀(a, b) ∈ R2, sin(a− b) = sin a cos b− sin b cos a sin(a+ b) = sin a cos b+ sin b cos b

3.2 Applications

Les deux propriétés suivantes sont très faciles à démontrer :

Propriété 3.2.1 – Application à l’alignement et au parallélisme

(i) A, B et C sont alignés si et seulement si Det( #    »

AB,
#    »

AC) = 0.

(ii) d et d′ sont parallèles si et seulement si leurs vecteurs directeurs respectifs #»u et #»v sont colinéaires ce qui
équivaut encore à :

Det( #»u , #»v ) = 0
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1.I.2 - Chap. 03 Géometrie élémentaire du plan 8 / 15

Propriété 3.2.2 – Application au calcul d’angle
Soient #»u et #»v deux vecteurs non nuls :

( #»u , #»v ) = arcsin Det( #»u , #»v )
‖ #»u‖ ‖ #»v ‖

(2π) ou π − arcsin Det( #»u , #»v )
‖ #»u‖ ‖ #»v ‖

(2π)

Remarque 3.2.3 #»u et #»v étant deux vecteurs non nuls, la connaissance de #»u · #»v et Det( #»u , #»v ) permet de
calculer (sans figure !) la mesure principale de l’angle ( #»u , #»v ).

Exercice 3.2.4 Déterminer une valeur approchée de l’angle ( #»u , #»v ), les vecteurs #»u et #»v ayant pour coor-
données (−1, 3) et (4,−2) dans un repère orthonormal direct.

Définition 3.2.5 Soit B = ( #»ı , #» ) une base du plan et #»u et #»v deux vecteurs de coordonnées (x, y) et
(x′, y′) dans B. On a vu que si B est une base orthonormale directe, le réel xy′ − x′y est égal au déterminant
géométrique des vecteurs #»u et #»v . Si B est une base quelconque ce n’est en général pas le cas, et on appelle
déterminant de #»u et #»v dans la base B ce réel.

Il est noté

∣∣∣∣ x x′

y y′

∣∣∣∣ ou detB( #»u , #»v ) et se calcule par la règle « du gamma » :

detB( #»
u ,

#»
v ) =

∣∣∣∣
x x

′

y y
′

∣∣∣∣ = xy′ − x′y

1

Propriété 3.2.6 Soit B = ( #»ı , #» ) une base du plan et #»u et #»v deux vecteurs de coordonnées (x, y) et (x′, y′)
dans B :

#»u et #»v colinéaires ⇔ Det( #»u , #»v ) = 0⇔ detB( #»u , #»v ) = 0

Exercice 3.2.7

1. Démontrer la propriété suivante.

2. Soit t ∈ R. Déterminer t de sorte que #»u (t, t+ 1) et #»v (t− 4, 2t+ 1) soient colinéaires.

4 Droites

4.1 Deux lignes de niveau

Définition et propriété 4.1.1 Soit k ∈ R, A ∈ P et #»u un vecteur du plan non nul. On considère
l’application ϕ suivante :

ϕ : P −→ R
M 7−→ #»u · #     »

AM

(i) L’ensemble E des antécédents de k par l’application ϕ est appelé ligne de niveau de l’application ϕ :

E =
¶
M ∈ P/ #»u · #     »

AM = k
©

(ii) Cet ensemble E est une droite.

Démonstration : Soit d la droite passant par A,
de vecteur directeur #»u , orientée par ce dernier. Pour
tout M ∈ P on note H le projété orthogonal de M
sur d, alors #»u · #     »

AM = ‖ #»u‖AH ainsi :

#»u · #     »

AM = k ⇔ AH = k

‖ #»u‖

Par conséquent l’ensemble des points M tels que
#»u · #     »

AM = k est une droite ∆ de vecteur normal #»u .
C.Q.F.D.

b

b

b

A

H

#»
u

M

∆

d

1
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Propriété 4.1.2 Soit A ∈ P et #»u un vecteur du plan non nul. Toute ligne de niveau de l’application

M 7→ Det( #»u ,
#     »

AM) est également une droite.

Démonstration : Soit k ∈ R. Notons d la droite passant par A de vecteur normal #»u et orienté par
#»v ∈ #»P , vecteur non nul tel que ( #»u , #»v ) = π

2 (2π).
Pour tout M ∈ P, on note H le projeté orthogonal de

M sur d. Alors :

Det( #»u ,
#     »

AM) = ‖ #»u‖ AM sin( #»u ,
#     »

AM) = ‖ #»u‖ AH

Ainsi :

Det( #»u ,
#     »

AM) = k ⇔ AH = k

‖ #»u‖

bb

b

#»
u

A

M

H

#»
v

d

∆

1

Par conséquent l’ensemble des points M tels que Det( #»u ,
#     »

AM) = k est une droite ∆ de vecteur
directeur #»u .

C.Q.F.D.

4.2 Représentation paramétrique de droite

Dans les paragraphes 4.2 à 4.4, on munit le plan P d’un repère cartésien (quelconque sauf si mention
contraire). Les coordonnées sont données dans ce repère.

Propriétés et définition 4.2.1 Soient A(xA, yA) et B(xB , yB) deux points distincts et #»u (α, β) un vecteur
du plan non nul.

(i) La droite d passant par A de vecteur directeur #»u est l’ensemble des points M de coordonnées (x, y) telles
qu’il existe t ∈ R tel que : ß

x = αt+ xA
y = βt+ yA

t ∈ R

Une telle écriture est appelée représentation paramétrique de la droite d.

(ii) La droite (AB) admet pour représentation paramétrique :ß
x = (xB − xA)t+ xA
y = (yB − yA)t+ yA

t ∈ R

Démonstration : M ∈ d si et seulement si les vecteurs
#     »

AM et #»u sont colinéaires, autrement dit si
et seulement s’il existe t ∈ R tel que

#     »

AM = t #»u soit :ß
x− xA = αt
y − yA = βt

⇔
ß
x = αt+ xA
y = βt+ yA

Le point (ii) se démontre de façon analogue.
C.Q.F.D.

Remarque 4.2.2 Une droite admet plusieurs représentations paramétriques.

Propriété 4.2.3 On munit le plan d’un repère orthonormal.
Soient A(xA, yA) et #»n(a, b) un vecteur non nul. La droite d passant par A de vecteur normal #»n admet pour

représentation paramétrique : ß
x = bt+ xA
y = −at+ yA

t ∈ R

Démonstration : Il suffit de constater qu’en repère orthonormal #»u (b,−a) et #»n(a, b) sont orthogonaux.
C.Q.F.D.

Exercice 4.2.4 Soit A et B de coordonnées (1,−2) et B(−2, 3) dans un repère orthonormal. Déterminer
une représentation paramétrique de la médiatrice de [AB].
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4.3 Équations cartésienne et polaire de droite

Propriété et définition 4.3.1 Soit (a, b) ∈ R2 non tous les deux nuls et soit c ∈ R.
L’ensemble des points M(x, y) tel que ax+ by+ c = 0 est une droite. Une telle écriture est appelée équation

cartésienne de droite.

Démonstration : Si b 6= 0 alors pour tout point M(x, y) :

ax+ by + c = 0⇔ y = −a
b
x− c

b
⇔ Il existe t ∈ R tel que

ß
x = t
y = −ab t−

c
b

On reconnâıt la représentation paramétrique de la droite d de vecteur directeur #»u
(
1,−ab

)
et passant

par le point de coordonnées
(
0,− cb

)
.

Si b = 0 alors a 6= 0 et pour tout point M(x, y) :

ax+ c = 0⇔ x = − c
a
⇔ Il existe t ∈ R tel que

ß
x = − c

a
y = t

À nouveau, on reconnâıt la représentation paramétrique de la droite d de vecteur directeur #»u (0, 1)
et passant par le point de coordonnées

(
− c
a , 0
)
.

C.Q.F.D.

Remarque 4.3.2 Toute droite admet une équation cartésienne et, comme une représentation paramétrique,
celle-ci n’est pas unique.

On déduit facilement de la démonstration précédente que :

Définitions 4.3.3 Selon que b est différent de 0 ou
non, ax+by+c = 0 est équivalent soit à y = mx+p soit
à x = k (où (m, p, k) ∈ R3). Chacune de ses écritures
est appelée équation réduite de droite.

Dans le cas où une droite d a pour équation réduite
y = mx + p, m est appelé coefficient directeur et p
est appelé ordonnée à l’origine de d. #»u (1,m) est un
vecteur directeur de cette droite d et elle passe par le
point de coordonnées (0, p).

Dans le cas où une droite d a pour équation réduite
x = k, #»u (0, 1) est un vecteur directeur de cette droite d
et elle passe par le point de coordonnées (k, 0).

b b

b

#»ı

#»

O (k, 0)

x
=
k

y =
m
x+
p

(0, p)

b

#»u (1,m)

1

Propriété 4.3.4 Soient A(xA, yA) et B(xB , yB) deux points distincts et #»u (α, β) et #»n (a, b) deux vecteurs
non nuls.

(i) La droite (AB) a pour équation cartésienne :

(yB − yA)(x− xA)− (xB − xA)(y − yA) = 0

(ii) La droite passant par A et de vecteur directeur #»u (α, β) a pour équation cartésienne :

β(x− xA)− α(y − yA) = 0

(iii) Si le repère est orthonormal, alors la droite passant par A et de vecteur normal #»n(a, b) a pour équation
cartésienne :

a(x− xA) + b(y − yA) = 0

Exercice 4.3.5

1. Démontrer la propriété précédente.

2. Soient A(1, 4) et B(−2, 3) deux points dont on donne les coordonnées dans un repère orthonormal. Donner
une équation cartésienne de la médiatrice de [AB].
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Définition 4.3.6 On munit le plan P du repère R = (O; #»e1,
#»e2) orthonormal direct. Soit α ∈ R et la droite

d passant par O et de vecteur directeur #»u (α) (cf. 1.3.3). d\{O} est l’ensemble des points de coordonnées polaires
(ρ, θ) ∈ R∗+ × R telles que θ = α (π).

Une telle écriture est appelée équation polaire de la droite d passant par O.

4.4 Intersection de deux droites

On détermine l’intersection de deux droites d et d′ données par leurs équations cartésiennes ax+ by + c = 0
et a′x+ b′y + c′ = 0 en résolvant le système :

(S)
ß
ax+ by + c = 0
a′x+ b′y + c′ = 0

Ce système, d’inconnues x et y peut avoir un unique couple solution (les droites d et d′ sont sécantes en
un point dont les coordonnées sont les solutions de (S)), aucune solution (les droites d et d′ sont strictement
parallèles) ou une infinité de solutions (les droites d et d′ sont confondues).

Remarques 4.4.1

(i) Les droites d et d′ sont parallèles si et seulement si leurs vecteurs directeurs #»u (−b, a) et #»u ′(−b′, a′) sont
colinéaires et cela équivaut à (propriété 3.2.6) : ab′ − a′b = 0. Autrement dit, le système (S) admet une
unique solution si et seulement si ab′ − a′b 6= 0.

(ii) Dans le cas d’équations réduites de la forme y = mx+ p et y = m′x+ p, les droites d et d′ sont parallèles
si et seulement si leurs vecteurs directeurs #»u (1,m) et #»u ′(1,m′) sont colinéaires et cela équivaut à m = m′.

On peut également rechercher l’intersection de deux droites d et d′ telle que d est donnée par une équation

cartésienne ax + by + c = 0 et d′ par une représentation paramétrique

ß
x = αt+ xA
y = βt+ yA

. On résout alors le

système :

(S)

 ax+ by + c = 0
x = αt+ xA
y = βt+ yA

Pour cela, on remplace dans la première équation, x et y par αt+xA et βt+yA pour en déduire (si possible)
t puis x et y.

Enfin on peut aussi rechercher l’intersection de deux droites d et d′ données par leurs représentation para-
métriques. On résout alors le système :

(S)


x = αt+ xA
y = βt+ yA
x = α′u+ xB
y = β′u+ yB

⇔


αt+ xA = α′u+ xB
βt+ yA = β′u+ yB
x = α′u+ xB
y = β′u+ yB

Des deux premières équations on déduit (si possible) u que l’on remplace dans les deux dernières pour
déterminer x et y.

Exercice 4.4.2 Soit A(1, 1), B(−2, 2), C(0, 4) et D(−1,−2). Déterminer les coordonnées de l’intersection
de (AB) et (CD).

4.5 Distance d’un point à une droite

Propriété 4.5.1 On se place dans un repère ortho-
normal.

Soit ∆ la droite d’équation cartésienne ax+by+c = 0
((a, b, c) ∈ R3, a et b non tous deux nuls) et A le point
de coordonnées (xA, yA). Alors la distance du point A à
la droite d vaut :

d(A,∆) = |axA + byA + c|√
a2 + b2

∆

O #»ı

#»

b

b
b

b

M

H

A

d(A,∆)

#»n

1
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Démonstration : ∆ a pour vecteur normal #»n(a, b).
Soit M(xM , yM ) un point appartenant à d et H le projeté orthogonal de M sur la droite passant par

A et perpendiculaire à ∆. Alors | #     »

AM · #»n | = AH ‖ #»n‖. Donc :

d(A,∆) = AH = |
#     »

AM · #»n |
‖ #»n‖

= |(xM − xA)a+ (yM − yA)b|√
a2 + b2

= |axM − axA + byM − byA|√
a2 + b2

Or axM + byM + c = 0 donc axM + byM = −c et :

d(A,∆) = | − c− axA − byA|√
a2 + b2

= |axA + byA + c|√
a2 + b2

C.Q.F.D.

Exercice 4.5.2 Dans un repère orthonormal, déterminer l’ensemble des point équidistants de l’axe des
abscisses et de la première bissectrice.

5 Cercles

Dans tout ce paragraphe, on munit le plan P d’un repère cartésien orthonormal, les coordonnées sont données
dans ce repère.

5.1 Équations cartésienne et polaire d’un cercle

Définitions et propriété 5.1.1 Soit Ω ∈ P de coordonnées (a, b) ∈ R2 et soit r ∈ R+. L’ensemble des
points M ∈ P tels que ΩM = r est appelé cercle de centre Ω et de rayon r.

L’ensemble des points M(x, y) tel que (x− a)2 + (y − b)2 = r2 est le cercle C de centre Ω et de rayon r.
Une telle écriture est appelée équation cartésienne de cercle.

Démonstration : M(x, y) ∈ C ⇔
∥∥∥ #     »ΩM

∥∥∥ = r ⇔ #     »ΩM2 = r2 ⇔ (x− a)2 + (y − b) = r2.
C.Q.F.D.

Remarque 5.1.2 En développant l’expression (x− a)2 + (y− b)2 = r2 on obtient une expression du type :

x2 + αx+ y2 + βy + γ = 0

où (α, β, γ) ∈ R3 mais réciproquement une telle équation n’est pas nécessairement l’équation d’un cercle. L’en-
semble des points de coordonnées (x, y) telles que x2 +αx+ y2 + βy+ γ = 0 peut aussi être réduit à l’ensemble
vide (par exempe si α = β = 0 et γ = 1).

Exercice 5.1.3 Déterminer si les équations ci-dessous sont celles d’un cercle :

x2 + y2 − x+ 4y + 5 = 0 x2 + y2 − 2x+ 3y + 3 = 0

Propriété 5.1.4 Soient A(xA, yA) et B(xB , yB). Le cercle C de diamètre [AB] a pour équation cartésienne :

(x− xA)(x− xB) + (y − yA)(y − yB) = 0

Exercice 5.1.5

1. Démontrer la propriété précédente.

2. (a) Déterminer l’équation du cercle passant par A(1, 0), B(3, 2) et C(2, 4).
(b) L’axe des abscisses est-il tangent à ce cercle ?

Définition 5.1.6 On munit le plan P du repère R = (O; #»e1,
#»e2) orthonormal direct.

Le cercle C de centre O et de rayon r ∈ R+ est l’ensemble des points de coordonnées polaires (ρ, θ) ∈ R+×R
telles que ρ = r. Cette écriture est appelée équation polaire du cercle C de centre O.

Stéphane Passerat – TSI1 – Lycée Louis Vincent
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5.2 Intersection d’un cercle et d’une droite

On détermine l’intersection d’un cercle C et d’une droite d donnés par leurs équations cartésiennes
x2 + y2 + αx+ βy + γ = 0 et ax+ by + c = 0 en résolvant le système :

(S)
ß
x2 + y2 + αx+ βy + γ = 0
ax+ by + c = 0

On écrit l’équation réduite de d. Si elle est de la forme x = k on est amené à résoudre l’équation du second
degré y2 + βy + γ + k2 + αk = 0 d’inconnue y. Si elle est de la forme y = mx + p on est amené à résoudre
l’équation du second degré x2 + (mx+ p)2 + αx+ β(mx+ p) + γ = 0 d’inconnue x.

Selon le nombre de solutions de cette équation du second degré, le système (S) peut avoir deux couples
solutions (si ∆ > 0, la droite d coupe le cercle C en deux points), un unique couple solution (si ∆ = 0, la droite
d est tangente au cercle C), ou aucune solution (si ∆ < 0, la droite d ne coupe pas le cercle C). On peut aussi
déterminer le nombre de solutions en comparant d(Ω, d) au rayon du cercle.

b b b

Ω Ω Ω

d

∆ > 0

d

∆ = 0

d

∆ < 0

C

C

C

1

Exercice 5.2.1 Soit C le cercle trigonométrique et A(4, 0).
Déterminer les équations des tangentes à C passant par A.

6 Similitudes du plan

6.1 Définitions et exemples

Définitions 6.1.1

(i) On appelle transformation du plan P toute bijection de P dans P. Autrement dit une transformation
est une application f de P dans P tel que tout point M ∈ P admet exactement un antécédent par f .

(ii) On appelle similitude toute transformation s du plan telle qu’il existe une constante k ∈ R∗+ telle que :

∀(M,N) ∈ P2 tel que M 6= N,
s(M)s(N)
MN

= k

Cette constante k est appelé rapport de la similitude s.

Remarques 6.1.2

(i) Les translations, symétries centrales, les symétries axiales (on dit aussi réflexion), les homothéties (de
rapport k 6= 0), les rotations sont des transformations et des similitudes. Mais les projections ne sont pas
des transformations.

(ii) On peut composer deux similitudes. La composée de deux similitudes de rapport k1 ∈ R∗+ et k2 ∈ R∗+ est
une similitude de rapport k1k2 ∈ R∗+. On peut par exemple composer une homothétie de rapport 5

2 , de
centre Ω ∈ P avec une translation de vecteur #»u , on obtient une similitude de rapport 5

2 :
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#»
u

b

A

B

C

Ω

b

b

b

b

A
′

B′

C′

b

b

b

b

b

C′′

A′′

B′′

1

(iii) Une similitude étant une bijection, elle admet une bijection réciproque. La bijection réciproque d’une
similitude de rapport k ∈ R∗+ est une similitude de rapport 1

k . L’ensemble des similitudes muni de la loi
de composition est un groupe.

La propriété suivante est admise :

Propriété 6.1.3

(i) L’image d’un segment, d’une droite, d’un cercle, d’un triangle par une similitude est un segment, une
droite, un cercle, un triangle semblable.

(ii) Une similitude laisse invariant les angles géométriques (i.e. non orientés).

(iii) Une similitude de rapport k ∈ R∗+ multiplie les aires par k2.

6.2 Écriture complexe d’une similitude directe

Rappelons la définition suivante (cf. chapitre 1.I.1) :

Définition 6.2.1 Soit a ∈ C∗ et b ∈ C.
On appelle similitude directe l’application s du plan dans lui-même qui à tout point M ∈ P d’affixe z ∈ C

associe M ′ ∈ P d’affixe z′ ∈ C telle que :
z′ = az + b

Remarques 6.2.2

(i) La définition d’une similitude directe est compatible avec la définition, plus générale, d’une similitude. En
effet, on déduit de a 6= 0 que s est une bijection du plan dans lui-même et pour tous points M et N
distincts on a :

s(M)s(N)
MN

= |z
′
M − z′N |
|zM − zN |

=
∣∣∣∣azM + b− azN − b

zM − zN

∣∣∣∣ =
∣∣∣∣a(zM − zN )
zM − zN

∣∣∣∣ = |a|

(ii) De plus une simulitude directe conserve non seulement les angles géométriques mais aussi orientés. En effet
pour tous points M , N et P deux à deux distincts on a :

(
#                     »

s(M)s(N),
#                     »

s(M)s(P )) = Arg z
′
P − z′M
z′N − z′M

= Arg azP + b− azM − b
azN + b− azM − b

= Arg a(zP − zM )
a(zN − zM ) = ( #      »

MN,
#      »

MP ) (2π)

On a également vu dans le chapitre 1.I.1 la propriété suivante :
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Définitions et propriété 6.2.3 Soit s la similitude directe d’écriture complexe z′ = az+b ((a, b) ∈ C∗×C).

(i) Si a = 1 alors s est la translation de vecteur #»u d’affixe b.

(ii) Si a 6= 1 alors il existe un unique (Ω, k) ∈ P × R∗+ et θ ∈ R tels que s(Ω) = Ω et pour tout point M ∈ P
distinct de Ω, son image M ′ par s est caractérisée par :® Ä

#     »ΩM,
#       »

ΩM ′
ä

= θ (2π)
ΩM ′ = kΩM

Le point Ω est appelé centre de la similitude directe s. Le réel θ est appelé mesure d’angle de la
similitude s, k est son rapport.

Remarque 6.2.4 Rappelons que si a 6= 1, on déter-
mine Ω grâce à son affixe ω qui est la solution de l’équation
z = az + b. s a alors pour écriture complexe :

z′ − ω = keiθ(z − ω)

La propriété suivante est admise :

Propriété 6.2.5 Soit s la similitude directe d’écriture

complexe z′−ω = keiθ(z−ω) avec ω ∈ C, k ∈ R∗+ et θ ∈ R.
s est la composée commutative de l’homothétie h de centre
Ω d’affixe ω et de rapport k et de la rotation r de centre
Ω et de mesure d’angle θ.

b

b

b

b

Ω
M

M1

M2 =M ′

θ

1

Remarques 6.2.6

(i) Dans le cas où a ∈ R\{1} (c’est-à-dire θ = 0 (π)), la similitude directe d’écriture complexe z′ = az + b est
l’homothétie de centre Ω et de rapport a.

(ii) Dans le cas où a ∈ U\{1} (c’est-à-dire k = 1), la similitude directe d’écriture complexe z′ = az + b est la
rotation de centre Ω et d’angle Arg a.
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