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Géométrie élémentaire du plan

Prérequis :
— le plan, en tant quﬂsemble de points, et la fagon dont, a partir de deux points
A et B, on construit AB.

— le calcul vectoriel.

— la notion de distance euclidienne.
— lorthogonalité.

— la notion d’angle.

Notations :
— P désigne le plan (affine euclidien).
- Ple plan vectoriel (c’est-a-dire l’ensemble des vecteurs du plan P).
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1 Deux modes de repérage dans le plan

1.1 Orientation, bases et reperes

Remarques 1.1.1
(i) I y a deux fagons d’orienter le plan, c’est-a-dire deux fagons d’attribuer le signe positif & un sens
de rotation. Traditionnellement, on attribue le signe positif au sens trigonométrique (sens inverse des
aiguilles d’'une montre). Dorénavant P est orienté.

(ii) Rappelons que toute mesure d’angle n’est définie que modulo 27 et que tout angle admet une unique
mesure dans U'intervalle | — 7, ]. Cette mesure est appelée mesure principale.

Définition 1.1.2 Soit (7, 7) € P 2.
U et U sont colindaires si et seulement s’il existe deux réels « et 3 non tous les deux nuls tels que :

QT +BT =0

Remarques 1.1.3

(i) En pratique, lorsqu’on détermine 1’éventuelle colinéarité de deux vecteurs, ils sont souvent non nuls. Si par
— =g — — o« s e . 5 . — —
exemple u # 0, alors ¥ et v sont colinéaires si et seulement s’il existe A € R tel que v = 4.

(ii) La colinéarité permet de définir la notion de droite : un point A € P et un vecteur @ non nul étant donnés,
I’ensemble des points M tels que AM et 2 sont colinéaires est appelé la droite passant par A et de vecteur
directeur %.

(iii) On peut également proposer la définition suivante : un point A € P et un vecteur 7 non nul étant donné,

I’ensemble des points M tels que AM et 7 sont orthogonaux est une droite. 7 est appelé un vecteur
normal de cette droite.

Définitions 1.1.4

(i) On appelle base du plan tout couple B = (7, 7) ot 7 et J sont deux vecteurs non colinéaires.
(ii) On appelle base orthogonale du plan toute base B = (7, 7) telle que (7,7) admette pour mesure
principale +7.
(iii) On appelle base orthonormale du plan toute base orthogonale B = (7", 7) telle que | 7| = || 7| = 1.

(iv) On appelle base directe (respectivement indirecte) du plan toute base B = (7, 7) telle que (7, 7) ait
sa mesure principale dans l'intervalle ]0, 7| (respectivement | — 7, 0[).

Définitions 1.1.5
(i) On appelle repere cartésien du plan (ou plus simplement repere) tout triplet R = (O; 7, 7) on O € P,
et (7,7) est une base.
Le point O est appelé origine du repeére, les droites passant par O de vecteurs directeurs respectifs 7 et
7 sont appelées axes du repere : I’axe des abscisses d'une part et I’axe des ordonnées d’autre part.

(ii) On appelle repére orthogonal du plan tout repere R = (O; 7, 7) tel que (7, 7) est une base orthogonale.

(iii) On appelle repére orthonormal du plan tout repere R = (O; 7, 7) tel que (7', 7) est une base ortho-
normale.

—

(iv) On appelle repére direct (respectivement indirect) du plan tout repere R = (O; 7, 7) tel que (7, 7)
est une base directe (respectivement indirecte).

1.2 Coordonnées cartésiennes

—

Propriété et définition 1.2.1 Un repere R = (O; 7, 7) étant donné, pour tout point M € P il existe un
unique couple (z,y) € R? tel que :
OM =z7 +y7

Cet unique couple est appelé coordonnées cartésiennes de M dans le repere R.
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Exercice 1.2.2
1. Démontrer I'unicité dans la démonstration précédente.

2. Démontrer que, pour tout n € N, les points M(yv/n +1 —/n,1) et N(1,/n+ 1+ /n) sont tels que OM
et ON sont colinéaires.

Remarques 1.2.3
(i) De la propriété précédente, on déduit qu’il existe une bijection
entre le plan P et R%. On dit que I'on peut identifier le plan
P et 'ensemble R2. Si de plus le repere choisi est orthonormal
direct, on peut également identifier le plan a C.
(ii) L’ensemble P des vecteurs du plan est muni d’une structure
d’espace vectoriel réel (cf. annexe) et tout ¥ € P s'éerit de

fagon unique x 7 +y7 ot (7, 7) est une base de P et le couple
(z,y) est appelé coordonnées de .

Propriété 1.2.4 — Formules de changement de repére orthonormaux directs
Soient R = (0;7,7) et R' = (O';%7’,7’) deux reperes orthonormaux directs. Pour tout M € P, on note
(x,y) ses coordonnées dans R et (z’,y) ses coordonnées dans R’. On note (a, b) les coordonnées de O’ dans R.

—

(i) 1l existe 0 € R tel que les coordonnées de 7’ et 7’ dans le repere R sont :
N (cos 0) ) (— sin 9)
" \sing 7\ cos®

{ x=a+ 2" cosf —y' sind
y=>b+a'sinf + 1 cosd

(ii) z et y vérifient :

o 7

\

Démonstration : Commencgons par démontrer 'existence de 6 : P est muni du repére orthonormal
direct R et ce repere permet d’identifier P & C. Soit 2z € C l'affixe de 7", puisque || 7’| = 1 on en déduit
que z € U donc il existe # € R tel que z = ¢! par conséquent 7 a pour coordonnées (cos @, sin @) dans
R.

De plus, puisque (77, 7’) = % (27) on en déduit que laffixe de 7' est l(+3) donc 7" a pour
coordonnées (cos (6 + 5) ,sin (6 + 5)) soit (—siné,cosd).
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Concernant le point (ii) on a :

OM =00+ 0'M
2T +y T =arT +b07 +2 7T+ T
2T +yJ =arT +b7 +2' (cos07 +sin07F) +y (—sinf7 + cos7)
27 +y7 =(a+a2 cos—y'sind) T + (b+a'sinf + 4y cosh) T

D’ou le résultat par unicité des coordonnées dans un repere.
C.Q.F.D.

—

Exercice 1.2.5 On considere le plan P muni d’un repére orthonormal (O; 7, 7) et du repére orthonormal
(0,7",7"), image de (O; 7, 7) par rotation de centre O et d’angle 7.
1. Donner les coordonnées de 77 et 7' dans (O; 7, 7).
2. (a) Soit A le point de coordonnées (1,2) dans (O; 7, 7). Quelles sont ses coordonnées dans (O, 7", 7")?
(b) Soit B de coordonnées (—2,3) dans (O, 7', 7"). Quelles sont ses coordonnées dans (O; 7, 7)?
3. Soit la courbe d’équation z? — y? = 1 dans (O; 7, 7). Quelle est son équation dans (O, 7’,7’)? Que
peut-on en déduire ?

1.3 Coordonnées polaires

Propriété et définition 1.3.1 Soit R = (O;eér,e3) un re-
pere o_rt)honormal. Pour tout point M € P distinct de O, 'angle M(p, )
(e1,0M) existe, on note # une mesure de cet angle et on note
p = OM. Réciproquement, pour tout (p,f) € R x R, il existe un P

unique point M tel que (e1, OM) =0 et OM = p.

Le couple (p,0) est alors appelé coordonnées polaires du . \\9
point M. p est appelé le rayon polaire de M et 6 'angle po- €2 \
laire de M. !

Ol el

Par convention, on attribue & O les coordonnées polaires (0, 6) (bien que I’angle entre les vecteurs €7 et O—O>)
ne soit pas défini) ol f est un nombre réel quelconque. Dorénavant p désigne donc un réel supérieur ou égal & 0.

Remarque 1.3.2 Il est clair que pour tout M € P, p = OM est unique. Par contre, pour M # O, 0
n’est unique qu’a 2km preés (avec k € Z). Autrement dit si M et M’ sont deux points distincts de O dont les
coordonnées polaires respectives sont (p, 6) et (p/,8’) alors :

g p=y
M =M @{IlexistekEZtelqueﬂzﬁ’—FQkﬂ

Définition 1.3.3 Le plan étant muni d’un repére orthonormal
R = (O;é7,€3), on appelle, pour tout § € R, repére polaire, le M(p,0)
repere (O; @ (), U(0) ou @ (0) et ¥(0) sont définis par :

() = cosfer + sinfes o/ N

{ Z — > AN
v(0) = —sinf ey + cosfes \\
—> N \

Autrement dit @ (0) et U(0) sont les vecteurs d’affixes respec- 7(0) “2 u(0) \

tives el et e!(!15) = jeif. L

Pour tout point M € P, OM = pu(6) ou (p,0) € Ry x R sont Ol e
les coordonnées polaires de M.

1.4 Lien entre les deux modes de repérage

La propriété suivante est triviale :
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Propriété 1.4.1 Le plan étant muni d’un repere orthonormal R et soit M € P un point distinct de O dont
on note (z,y) € R? et (p,0) € R% x R les coordonnées cartésiennes et polaires dans R. On a alors :

p =12 +1?

JL‘:pCOSQ cosf = X
{ Yy = pSiHe . v m;+y2
sinf =

V2 4y?
x Y .

On prendra garde au fait que 6 n’est pas nécessairement égal & arccos ou arcsin ; cela dépend
/22+y2 /I2+y2

du quart de plan dans lequel se trouve M.

Exercice 1.4.2 On munit le plan d’un repere orthonormal.

1. On consideére les points A, B, C et D dont on donne les coordonnées cartésiennes : (2,2), (—v/3,1),
(—8,—8v/3) et D(—6,—1). Déterminer les polaires de ces points.
3T

2. Déterminer les coordonnées cartésiennes des points F et F' dont on donne les coordonnées polaires (\@, —)

1
et (1 ,f%ﬂ).

2 Produit scalaire

2.1 Définitions, propriétés

Définition 2.1.1 Soit (¥, 7) € P2. On appelle produit scalaire de ¥ et ¥ le réel défini par :

() - T=0sit=0oud=0.
(i) @-T = 2| |7 cos(Z,T)si T#0 et T#O0.

Définition 2.1.2 Soit d une droite sur laquelle on a choisi arbitrairement une orientation et soient A et B

deux points sur cette droite. On appelle mesure algébrique de AB le réel noté AB défini par AB = AB si le
sens de A vers B est positif et AB = —AB si ce sens est négatif.

Remarques 2.1.3

(i) Les mesures algébriques vérifient la relation de Chasles :si A, B et C sont trois points alignés et quelle
que soit l'orientation choisie sur (AB) on a : AC' = AB + BC.

(ii) La notion de mesure algébrique est utilisée dans la propriété suivante (admise).

Propriété 2.1.4 — Interprétation en terme de projection

Soient A, B, C et D quatre points du plan tels que A # B. On note C’ et D’les projetés orthogonaux de C'
et D sur (AB).

Le produit AB C"D’ ne dépend pas de I'orientation choisie sur (AC) et :

AB-AC = ABC'D

Cette relation est encore vrai si A = B, C’ et D’ désignant alors des points quelconques du plan.

Propriété 2.1.5 Soient (U, v, W) € Plet AR,
- U (symétrie)

. U-T4+u-Wet U-(AT) =71 -7) (linéarité a droite) bilinarits
(iii) (T+7) - W=0 -W+7- -@et (A\) U =A7u-7) (lindarité & gauche) (bilinéarité)
Démonstration :

Le point (i) découle de la parité de la fonction cos.

Sid =0 alors @ (U + W) et ¥V +ud- W valent 0. D

Si @ # 0 alors on considere des points tels que 7 = AB, '
U = AC et W = CD et on projette C' et D orthogonalement | C
sur (AB) pour obtenir C’ et D’. On a alors : |

Y

v

T (V+w)=AB (AC+CD) = AB- AD = AB AD’ 4
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Par ailleurs :
T-T+7 - @=AB-AC +AB-CD =ABAC" + AB C'D’ = AB (AC" + C'D’) = AB AD’

Ceci démontre la premlere partle du pomt (ii).
Soit \€ER.SiA=00oud =0 ou ¥ =0 alors il est clair que @ - (A\T) =0 = AT - 7).

On suppose que %, U et A sont non nuls. Si A > 0 alors :

- (AT) = [[Z|| AT cos(@, AT) = [ Z]| [T cos(Z, V)

= AMAN T cos(i, V) = A (W - T)

Si A <0 alors :

111 AT cos (32, F) + )

||| |AT|| cos(d, AT v
7)) =M |7 cos(W, V)

Al T (= cos(

7 (A7)

) =
s A(W - ¥) d’ou le point (ii).

)

Le point (iii) découle aisément de (i) et (ii) :

(U+7) =0 -(W+7)=0-d+0-U WA+ T -W

sl

Et (\Z) T =7 (\T) = AT - T) = A(T - D).
C.Q.F.D.

Exercice 2.1.6 Simplifier autant que possible 'expression ¥ - (4 + 27) — 27 - 4.

Propriété 2.1.7 — Expression en base orthonormale
—
Soient (@, ¥) € P 2 deux vecteurs de coordonnées cartésiennes (z,y) et (z’,%’) dans une base orthonormale

(7, 7). Alors :
iU =z +yy

Exercice 2.1.8
1. Démontrer la propriété précédente.
2. Soient U et ¥ d’affixes z et /. Démontrer que U - U = Re(z2').

3. A laide d’un produit scalaire, démontrer les deux formules suivantes :

Y(a,b) € R?, cos(a —b) = cosacosb + sinasinb cos(a + b) = cosacosb —sinasinb

2.2 Applications
Les deux propriétés suivantes sont tres faciles & démontrer :

Propriété 2.2.1 — Application a la perpendicularité
Soient deux droites d et d’ de vecteurs directeurs @ et U. d et d’ sont perpendiculaires si et seulement si :

u-T =0

Propriété 2.2.2 — Application au calcul d’angle

—

Soient @ et ¥ deux vecteurs non nuls : (¥, V) = +arccos ﬁ (27). En pratique, une figure peut
v

— Sllgy

permettre de déterminer le signe de la mesure principale de (7, U).

— —

Exercice 2.2.3 Déterminer une valeur approchée de I'angle (@, U), les vecteurs U et ¥ ayant pour coor-
données (1,4) et (5, —3) dans un repere orthonormal direct.
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3 Déterminant géométrique

3.1 Définition, propriétés

Définition 3.1.1 Soit (¥,7) € P2. On appelle déterminant géométrique de U et ¥ le réel défini par :
(i) Det(@,¥)=0si =0 ou T =0.
(i) Det(%,T) = ||Z|| | T sin(@,T) si T# 0 et T# 0.

Propriété 3.1.2 — Interprétation comme aire de parallélogramme
Soit (@, V) € P2, | Det(w, V)| est I'aire du parallélogramme construit sur u et ¥.

. . =4 =g . 7 .
Démonstration : Si @ = 0 ou ¥ = 0 alors l'aire du parallélogramme est nulle. Si les deux vecteurs
—> —> 5 . , . — —> —>
u et U sont non nuls alors aire du parallélogramme construit sur @ et ¥ vaut A = ||| h.

Or | Det(Z,T)| = ||| |7 |sin(,T)| et la tri-

gonométrie élémentaire dans le triangle rectangle ABC
donne |sin(u, V)| = H‘%W soit h = || V|| |sin(w, U)| donc 4

A= |2 |sin(u, T)| || V] soit finalement :

A = | Det(%, 7|

C.Q.F.D.

La propriété ci-dessous se démontre par les mémes méthodes que ce qui a été vu en 2.1.5 :

Propriété 3.1.3 Soit (¥, 7, W) € P3et A eR.
(i) Det(w,7) = —Det(V, @) (antisymétrie)
(i) Det(d, v + @) = Det(u, U) + Det(u, W) et
Det(@, A7) = ADet(%, V) (linéarité a droite)
(iii) Det(@ + ¥, W) = Det(u,w) + Det(V, W) et (bilinéarité)
Det(Au, ¥) = ADet(u, ¥) (linéarité a gauche)

Propriété 3.1.4 — Expression en base orthonormale directe

Soit (W, V) € P2 deux vecteurs de coordonnées (z,y) et (2',4’) dans une base orthonormale directe (7", 7).
Alors :
Det(, V) = zy’ — ya'’

Exercice 3.1.5
1. Démontrer la propriété précédente.
2. Soient U et U d’affixes z et 2. Démontrer que U - ¥ = Jm(z2').

3. A laide d'un produit scalaire, démontrer les deux formules suivantes :

Y(a,b) € R?, sin(a —b) = sinacosb — sinbcosa sin(a 4+ b) = sina cosb + sin b cos b

3.2 Applications

Les deux propriétés suivantes sont tres faciles & démontrer :

Propriété 3.2.1 — Application a I’alignement et au parallélisme

(i) A, B et C sont alignés si et seulement si Det(A—B), A—C’)) = 0.

(ii) d et d’ sont paralleles si et seulement si leurs vecteurs directeurs respectifs ¥ et ¥ sont colinéaires ce qui
équivaut encore a :
Det(w,7) =0
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Propriété 3.2.2 — Application au calcul d’angle
Soient ¥ et U deux vecteurs non nuls :

(27m) ou m — arcsin ———=—=-

Det(#, ¥) (2m)

Det(, 7)
IRk |

kD

Remarque 3.2.3 7 et ¥ étant deux vecteurs non nuls, la connaissance de U - U et Det(, ¥) permet de
calculer (sans figure!) la mesure principale de I'angle (U, 7).

—> —

Exercice 3.2.4 Déterminer une valeur approchée de 'angle (@, 7), les vecteurs u et ¥ ayant pour coor-
données (—1,3) et (4, —2) dans un repére orthonormal direct.

Définition 3.2.5 Soit B = (7', 7) une base du plan et ¥ et ¥ deux vecteurs de coordonnées (z,y) et
(2/,y’) dans B. On a vu que si B est une base orthonormale directe, le réel zy’ — 2’y est égal au déterminant
géométrique des vecteurs @ et U. Si B est une base quelconque ce n’est en général pas le cas, et on appelle
déterminant de ¥ et v dans la base B ce réel.

Il est noté z Za;/ ou detg(W, U) et se calcule par la régle « du gamma » :

/

detg(d, V) = ; ;, =axy — 2y

w

Propriété 3.2.6 Soit B = (7, 7) une base du plan et @ et ¥ deux vecteurs de coordonnées (z,y) et (z,y’)
dans B :
U et U colinéaires < Det(u, V) =0 & detp(u, v) =0

Exercice 3.2.7
1. Démontrer la propriété suivante.
2. Soit ¢t € R. Déterminer ¢ de sorte que @ (¢,t+ 1) et U(t — 4,2t + 1) soient colinéaires.

4 Droites

4.1 Deux lignes de niveau

Définition et propriété 4.1.1 Soit £k € R, A € P et © un vecteur du plan non nul. On considére
I’application ¢ suivante :
p: P — R
M — u-AM
(i) L’ensemble £ des antécédents de k par Papplication ¢ est appelé ligne de niveau de l'application ¢ :
£={MeP/ i AM =k}

(ii) Cet ensemble &£ est une droite.

Démonstration : Soit d la droite passant par A,
de vecteur directeur o, orientée par ce dernier. Pour
tout M € P on note H le projété orthogonal de M
sur d, alors @ - AM = ||| AH ainsi :

=

T-AM =k & AH = ——

1721

Par conséquent 1’ensemble des points M tels que
U - AM = k est une droite A de vecteur normal .
C.Q.F.D.
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Propriété 4.1.2 Soit A € P et ¥ un vecteur du plan non nul. Toute ligne de niveau de 'application
M — Det(u, AM) est également une droite.

Dé)monstration : Soit k& € R. Notons d la droite passant par A de vecteur normal % et orienté par
v € P, vecteur non nul tel que (7, 7) = 5 (2n).

Pour tout M € P, on note H le projeté orthogonal de ’d
M sur d. Alors : T ,/

/
Det(@, AM) = ||| AM sin(@, AM) = ||| AH ~~ /A
Ainsi : /v

A
- _ k /
/7

Par conséquent I’ensemble des points M tels que Det(W, AM) = k est une droite A de vecteur

directeur .
C.Q.F.D.

4.2 Représentation paramétrique de droite

Dans les paragraphes 4.2 & 4.4, on munit le plan P d’un repére cartésien (quelconque sauf si mention
contraire). Les coordonnées sont données dans ce repere.

Propriétés et définition 4.2.1 Soient A(z4,y4) et B(zp,yps) deux points distincts et @ («, 3) un vecteur
du plan non nul.

(i) La droite d passant par A de vecteur directeur ¥ est 'ensemble des points M de coordonnées (z,y) telles
qu’il existe ¢ € R tel que :

{x:at—i—xA fER

y=Pt+ya
Une telle écriture est appelée représentation paramétrique de la droite d.

(ii) La droite (AB) admet pour représentation paramétrique :

{m:(a:B—xA)t—l—xA fER

y=(yB —ya)t +ya

Démonstration : M € d si et seulement si les vecteurs AM et ¥ sont colinéaires, autrement dit si
et seulement s’il existe ¢t € R tel que AM = tu soit :

{x—x,q:at {xzat—i—xA
y—ya=pt y=P3t+ya

Le point (ii) se démontre de fagon analogue.
C.Q.F.D.

Remarque 4.2.2 Une droite admet plusieurs représentations paramétriques.

Propriété 4.2.3 On munit le plan d’un repére orthonormal.
Soient A(z4,ya) et 7 (a,b) un vecteur non nul. La droite d passant par A de vecteur normal 77 admet pour
représentation paramétrique :

{x:bt—l—xA L ER

y=—at+ya

Démonstration : II suffit de constater qu’en repere orthonormal % (b, —a) et 7 (a, b) sont orthogonaux.
C.Q.F.D.

Exercice 4.2.4 Soit A et B de coordonnées (1,—2) et B(—2,3) dans un repére orthonormal. Déterminer
une représentation paramétrique de la médiatrice de [AB].
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4.3 Equations cartésienne et polaire de droite

Propriété et définition 4.3.1 Soit (a,b) € R? non tous les deux nuls et soit ¢ € R.
L’ensemble des points M (x,y) tel que ax + by + ¢ = 0 est une droite. Une telle écriture est appelée équation
cartésienne de droite.

Démonstration : Si b # 0 alors pour tout point M(z,y) :
a c ) x =
az+by+c:0@y:fgxfgabllemstetGRtelque { Y= —a

On reconnait la représentation paramétrique de la droite d de vecteur directeur o (1, f%) et passant
par le point de coordonnées (07 —%).
Sib =0 alors a # 0 et pour tout point M(z,y) :

_£

ax+c=0<:>x:—EﬁllexistetERtelque { Zj_t a
a =

A nouveau, on reconnait la représentation paramétrique de la droite d de vecteur directeur @ (0, 1)
et passant par le point de coordonnées (—g, O).
C.QF.D.

Remarque 4.3.2 Toute droite admet une équation cartésienne et, comme une représentation paramétrique,
celle-ci n’est pas unique.

On déduit facilement de la démonstration précédente que :

Définitions 4.3.3 Selon que b est différent de 0 ou
non, ax + by +c = 0 est équivalent soit & y = mx + p soit
Az =k (ou (m,p,k) € R3). Chacune de ses écritures
est appelée équation réduite de droite.

Dans le cas ou une droite d a pour équation réduite
y = mx + p, m est appelé coefficient directeur et p
est appelé ordonnée a ’origine de d. ©¥(1,m) est un
vecteur directeur de cette droite d et elle passe par le
point de coordonnées (0, p).

Dans le cas ou une droite d a pour équation réduite
x =k, 1 (0,1) est un vecteur directeur de cette droite d
et elle passe par le point de coordonnées (k,0).

Propriété 4.3.4 Soient A(x4,ya) et B(xp,yp) deux points distincts et @ (a, 8) et 7 (a,b) deux vecteurs
non nuls.

(i) La droite (AB) a pour équation cartésienne :
(yB —ya)(x —za) — (xp —7a)(y —ya) =0
(ii) La droite passant par A et de vecteur directeur @ (c, 3) a pour équation cartésienne :
Bz —za) —aly—ya) =0

(iii) Si le repere est orthonormal, alors la droite passant par A et de vecteur normal 7 (a,b) a pour équation
cartésienne :
alr —x4)+bly—ya)=0

Exercice 4.3.5
1. Démontrer la propriété précédente.

2. Soient A(1,4) et B(—2,3) deux points dont on donne les coordonnées dans un repere orthonormal. Donner
une équation cartésienne de la médiatrice de [AB].
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Définition 4.3.6 On munit le plan P du repere R = (O;e7, é3) orthonormal direct. Soit o € R et la droite
d passant par O et de vecteur directeur u(a) (cf. 1.3.3). d\{O} est 'ensemble des points de coordonnées polaires
(p,0) € RY xR telles que § = o ().

Une telle écriture est appelée équation polaire de la droite d passant par O.

4.4 Intersection de deux droites

On détermine 'intersection de deux droites d et d’ données par leurs équations cartésiennes ax + by + ¢ =0
et a’x + b’y + ¢ = 0 en résolvant le systeme :

ax+by+c=0
() { drx+by+cd =0

Ce systéme, d’inconnues x et y peut avoir un unique couple solution (les droites d et d’ sont sécantes en
un point dont les coordonnées sont les solutions de (S)), aucune solution (les droites d et d’ sont strictement
paralleles) ou une infinité de solutions (les droites d et d’ sont confondues).

Remarques 4.4.1
(i) Les droites d et d’ sont paralleles si et seulement si leurs vecteurs directeurs u(—b,a) et u’'(—b',a’) sont
colinéaires et cela équivaut & (propriété 3.2.6) : ab’ — a’b = 0. Autrement dit, le systeme (S) admet une
unique solution si et seulement si ab’ — a’b # 0.
(ii) Dans le cas d’équations réduites de la forme y = ma + p et y = m/z + p, les droites d et d’ sont paralleles
si et seulement si leurs vecteurs directeurs (1, m) et u’(1,m’) sont colinéaires et cela équivaut & m = m/'.

On peut également rechercher l'intersection de deux droites d et d’ telle que d est donnée par une équation

r=at+ x4

cartésienne ax + by + ¢ = 0 et d’ par une représentation paramétrique { . On résout alors le

y=Pt+ya
systeme :
ar+by+c=0
(S) § z=at+x4
y=Pt+ya

Pour cela, on remplace dans la premiere équation, x et y par at+x4 et St +ya pour en déduire (si possible)
t puis x et y.

Enfin on peut aussi rechercher I'intersection de deux droites d et d’ données par leurs représentation para-
métriques. On résout alors le systeme :

r=at+xa at+z4=0u+tzp

y=pt+ya Bt +ya = B'u+ys
(S) r=cdu+zp < r=dadu+zp

y=0'u+yp y=0F'u+yp

Des deux premieres équations on déduit (si possible) u que l'on remplace dans les deux derniéres pour
déterminer x et y.

Exercice 4.4.2 Soit A(1,1), B(—2,2), C(0,4) et D(—1,—2). Déterminer les coordonnées de l'intersection
de (AB) et (CD).

4.5 Distance d’un point a une droite

Propriété 4.5.1 On se place dans un repére ortho-
normal.

Soit A la droite d’équation cartésienne ax+by—+c = 0
((a,b,c) € R3, a et b non tous deux nuls) et A le point
de coordonnées (z4,y4). Alors la distance du point A &
la droite d vaut :

_ara +bya +

d(A,A) =
4,4) Va2 + b2 0

=}
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Démonstration : A a pour vecteur normal 7 (a, b).
Soit M (2, yar) un point appartenant & d et H le projeté orthogonal de M sur la droite passant par
A et perpendiculaire & A. Alors |AM - 7| = AH ||77||. Donc :

a4 A) = ap = AM T _ |@n —2a)at (= ya)bl _ Javas = ava + byns = byal
’ 171 Va? 1172 N

Or azxpr + byys + ¢ =0 donc axys + byy = —c et :

| —c—ara—byal |axs +bya + ¢l

WA =T VTP

C.Q.F.D.

Exercice 4.5.2 Dans un repere orthonormal, déterminer ’ensemble des point équidistants de 1’axe des
abscisses et de la premiere bissectrice.

5 Cercles

Dans tout ce paragraphe, on munit le plan P d’un repere cartésien orthonormal, les coordonnées sont données
dans ce repere.
5.1 Equations cartésienne et polaire d’un cercle

Définitions et propriété 5.1.1 Soit Q € P de coordonnées (a,b) € R? et soit r € R;. L'ensemble des
points M € P tels que QM = r est appelé cercle de centre 2 et de rayon 7.

L’ensemble des points M (z,y) tel que (z — a)? + (y — b)? = r? est le cercle C de centre §2 et de rayon r.

Une telle écriture est appelée équation cartésienne de cercle.

Démonstration : M (z,y) € C & ”WH —reM?=rs (x—a)*+(y—0b) =r2
C.Q.F.D.

Remarque 5.1.2 En développant I'expression (x —a)? + (y — b)? = r? on obtient une expression du type :

2 +az+y*+ Py +y =0

ot (@, 8,7) € R? mais réciproquement une telle équation n’est pas nécessairement I’équation d'un cercle. L’en-
semble des points de coordonnées (x,%) telles que 2% + ax +y* + By + v = 0 peut aussi étre réduit & 'ensemble
vide (par exempe si a =3 =0et v =1).

Exercice 5.1.3 Déterminer si les équations ci-dessous sont celles d'un cercle :
2., ,2 _ 2, .2 _
T +y  —zrz+4y+5=0 °+y  —2x+3y+3=0
Propriété 5.1.4 Soient A(x4,y4) et B(zp,yp). Le cercle C de diametre [AB] a pour équation cartésienne :
(z—za)(z—2B)+ (Y —ya)ly—yp) =0

Exercice 5.1.5
1. Démontrer la propriété précédente.
2. (a) Déterminer ’équation du cercle passant par A(1,0), B(3,2) et C(2,4).

(b) L’axe des abscisses est-il tangent & ce cercle ?

Définition 5.1.6 On munit le plan P du repere R = (O; €7, €3) orthonormal direct.
Le cercle C de centre O et de rayon r € R est 'ensemble des points de coordonnées polaires (p,6) € Ry xR
telles que p = r. Cette écriture est appelée équation polaire du cercle C de centre O.
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5.2 Intersection d’un cercle et d’une droite

On détermine l'intersection d’un cercle C et d'une droite d donnés par leurs équations cartésiennes
224+ > +ar+ By+v=0et ar+ by + c = 0 en résolvant le systeme :

(S) { 224y’ +ax+ fy+v=0
ar+by+c=0

On écrit ’équation réduite de d. Si elle est de la forme x = k on est amené a résoudre 1’équation du second
degré y? + By + v + k2 + ak = 0 d’inconnue y. Si elle est de la forme y = mx + p on est amené & résoudre
I’équation du second degré 2% + (max + p)? + ax + B(mx + p) + v = 0 d’inconnue .

Selon le nombre de solutions de cette équation du second degré, le systeme (S) peut avoir deux couples
solutions (si A > 0, la droite d coupe le cercle C en deux points), un unique couple solution (si A = 0, la droite
d est tangente au cercle C), ou aucune solution (si A < 0, la droite d ne coupe pas le cercle C). On peut aussi
déterminer le nombre de solutions en comparant d(£2,d) au rayon du cercle.

Exercice 5.2.1 Soit C le cercle trigonométrique et A(4,0).
Déterminer les équations des tangentes a C passant par A.

6 Similitudes du plan

6.1 Définitions et exemples

Définitions 6.1.1

(i) On appelle transformation du plan P toute bijection de P dans P. Autrement dit une transformation
est une application f de P dans P tel que tout point M € P admet exactement un antécédent par f.

ii) On appelle similitude toute transformation s du plan telle qu’il existe une constante k € R* telle que :
+

Y(M,N) € P? tel que M # N,

Cette constante k est appelé rapport de la similitude s.

Remarques 6.1.2

(i) Les translations, symétries centrales, les symétries axiales (on dit aussi réflexion), les homothéties (de
rapport k # 0), les rotations sont des transformations et des similitudes. Mais les projections ne sont pas
des transformations.

(i) On peut composer deux similitudes. La composée de deux similitudes de rapport k1 € R et ko € R est
une similitude de rapport k1k2 € R%. On peut par exemple composer une homothétie de rapport %, de
centre £ € P avec une translation de vecteur 2, on obtient une similitude de rapport % :
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B/l

(iii) Une similitude étant une bijection, elle admet une bijection réciproque. La bijection réciproque d’une
similitude de rapport k € R’} est une similitude de rapport % L’ensemble des similitudes muni de la loi
de composition est un groupe.

La propriété suivante est admise :

Propriété 6.1.3

(i) L’image d’un segment, d’une droite, d'un cercle, d’un triangle par une similitude est un segment, une
droite, un cercle, un triangle semblable.

(ii) Une similitude laisse invariant les angles géométriques (i.e. non orientés).

iii) Une similitude de rapport k¥ € R* multiplie les aires par k2.
+

6.2 Ecriture complexe d’une similitude directe

Rappelons la définition suivante (cf. chapitre 1.1.1) :

Définition 6.2.1 Soit a € C* et b € C.
On appelle similitude directe I'application s du plan dans lui-méme qui & tout point M € P d’affixe z € C
associe M’ € P d’affixe 2’ € C telle que :
Y =az+b

Remarques 6.2.2

(i) La définition d’une similitude directe est compatible avec la définition, plus générale, d’une similitude. En
effet, on déduit de a # 0 que s est une bijection du plan dans lui-méme et pour tous points M et N
distincts on a :

s(M)s(N) |2l — 2yl azM—i—b—azN—b’ a(zM—zN)’ 1
= = = = |a
MN |zar — 2N | ZM — ZN ZM — ZN

(ii) De plus une simulitude directe conserve non seulement les angles géométriques mais aussi orientés. En effet
pour tous points M, N et P deux a deux distincts on a :

2 — 2 azp+b—azy — b alzp — zpr)
M)s(N M)s(P)) = A i M _ A — A
(S( )S( )7 S( )S( )) rg Z;\[ _ Z;\/I rg azN + b —azy — b rg G(ZN _ ZM)

= (MN,MP) (2)

On a également vu dans le chapitre 1.1.1 la propriété suivante :

Stéphane PASSERAT — T'SI1 — Lycée Louis VINCENT



1.1.2 - Chap. 03 Géometrie élémentaire du plan 15/ 15

Définitions et propriété 6.2.3 Soit s la similitude directe d’écriture complexe 2’ = az+b ((a,b) € C*xC).
(i) Sia =1 alors s est la translation de vecteur u d’affixe b.

(i) Sia # 1 alors il existe un unique (Q2,k) € P x R% et § € R tels que 5(2) = Q et pour tout point M € P
distinct de €2, son image M’ par s est caractérisée par :

(@M, QM) = ¢ (2)
QM = kQM

Le point € est appelé centre de la similitude directe s. Le réel 6 est appelé mesure d’angle de la
similitude s, k est son rapport.

Remarque 6.2.4 Rappelons que si a # 1, on déter-
mine () grace a son affixe w qui est la solution de I’équation My
z=az+b. s a alors pour écriture complexe :

I
<

: M,
2 —w=ke(z —w)

La propriété suivante est admise :

Propriété 6.2.5 Soit s la similitude directe d’écriture
complexe 2’/ —w = kel (z—w) avecw € C, k € R} et § € R.
s est la composée commutative de I’homothétie h de centre
Q) d’affixe w et de rapport k et de la rotation r de centre
) et de mesure d’angle 6. M

Remarques 6.2.6
(i) Dans le cas ot a € R\{1} (c’est-a-dire # = 0 (7)), la similitude directe d’écriture complexe z’ = az + b est
I’homothétie de centre Q2 et de rapport a.

(ii) Dans le cas ot a € U\{1} (c’est-a-dire k = 1), la similitude directe d’écriture complexe 2z’ = az + b est la
rotation de centre 2 et d’angle Arga.
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